Category: machine learning

Does Governance Outweigh the Art of Insight in the Age of AI?

Data visualization tools, desktop data discovery tools, and visual analytics are examples of traditional self-service BI tools that business analysts embrace because they provide a user-friendly way of quickly turning data into insights. These tools are geared toward business analysts that have the skills and knowledge to acquire the right data sets, perform the analysis, and present the insights needed to solve a business problem.

Read More


Birst 7: A new level of ease of use and collaboration across centralized and decentralized analytic teams

Cloud, digital transformation, mergers and acquisitions, big data analytics, data monetization, and more are all critical business initiatives creating an even greater divide between centralized IT and decentralized analytic teams in the business. This is why it is all too common for an organization to utilize at least two different Business Intelligence (BI) tools to support these different analytic needs.

Read More


Birst Smart Analytics: Using AI to Operationalize BI

How do you deliver more insights out to more people? Operationalizing BI and analytics – that is, putting the power of data in the hands of everyone across the enterprise, not just analysts and data scientists – has always been the mantra for Birst co-founder Brad Peters.

Read More


How AI is Lowering the Barrier to Entry for BI and Analytics

According to Gartner, more than 3,000 CIOs ranked Business Intelligence (BI) and Analytics as the top differentiating technology for their organizations. If BI and Analytics is such a game-changer, then why is the average adoption rate in organizations only 32%? Despite the efforts of Cloud BI vendors making it easier for users to acquire, explore, and analyze data sources without IT dependency, lack of data literacy and analytic skills still hinder widespread adoption for data-driven decision making.  But the industry is undergoing a fundamental transformation. The mainstream arrival of Artificial Intelligence (AI) brings with it the potential to finally meet the demand for actionable, enterprise-wide, fact-based decision making.

Read More


Inside the Mind and Methodology of a Data Scientist

When you hear about Data Science, Big Data, Analytics, Artificial Intelligence, Machine Learning, or Deep Learning, you may end up feeling a bit confused about what these terms mean. And it doesn’t help reduce the confusion when every tech vendor rebrands their products as AI.

Read More


How Are You Analyzing and Adjusting to the Mobile Shopper?

Every retailer is facing a similar challenge. If you are a retailer and constantly feel the pinch from online giants like Amazon and Google, you have an opportunity to gain back control and competitive advantage with more personalized products and services, building that intimate relationship that these giants simply cannot provide.

Read More


What AI Means to a Data Scientist

How many times have you wished for more hours in the day so you can complete more tasks? A key goal of AI or machine learning automation is to have machines complete tasks for you, freeing up time so you can focus on the more complex, higher-value tasks. However, there are simply not enough data scientists in the world to deliver on the AI potential. Data scientists building AI applications require numerous skills – data visualization, data cleansing, artificial intelligence algorithm selection and diagnostics. What if some of these data science tasks could be automated using AI, increasing data science productivity to tackle more AI use cases?

Read More


What AI Means to a Retailer Dedicated to Customer Experience

Retailers are focused more than ever on quickly adjusting to changing customer preferences and demand. Specialty’s Café and Bakery is a great example of a retailer that is using data to drive decisions related to product development and selection, inventories, staffing, and more to attract and keep customers.

Read More


Will AI Increase the Reach of BI and Analytics?

The business intelligence (BI) assembly line is broken, with adoption or utilization rates of only 30 percent in a typical organization, according to Gartner[1]. These adoption rates include all the users of the BI system – administrators who manage the system, analysts who build reports, and business users who consume reports for better decision making. This underutilization ignores employees outside the BI system who could be using valuable data to make better decisions. No one can argue that business performance and innovation are negatively impacted when data assets are not fully leveraged for decision making.

Read More